Topics in Algebra - Singularities in Positive Characteristic

Eric Walker*

Contents

1.1 Review of Algebraic Geometry: Schemes	
1.1 Review of Algebraic Geometry. Schemes	2
1.2 Review of Algebraic Geometry: Sheaf Cohomology	4
1.3 Review of Algebraic Geometry: Divisors and Line Bundles	6

*Dr. Miller

Semester 2

1.1 Review of Algebraic Geometry: Schemes

Remark 1.1.1. The model for us is schemes. Recall that, roughly, schemes are topological spaces with sheaves. A presheaf \mathcal{F} of abelian groups (eventually, rings) on a topological space X is an assignment of an abelian group (ring) $\mathcal{F}(U)$ for each open set $U \subseteq X$ and restriction maps $\mathcal{F}(U) \to \mathcal{F}(V)$ for $V \subseteq U$. We denote sections by $\Gamma(U, \mathcal{F}) = \mathcal{F}(U)$ and the image of $s \in \Gamma(U, \mathcal{F})$ in $\Gamma(V, \mathcal{F})$ as $s|_V$.

Example 1.1.2. If X is a complex manifold, then \mathcal{O}_X is the presheaf of holomorphic functions, and

 $\mathcal{O}_X(U) = \{ f : U \to \mathbf{C} \text{ holomorphic} \}.$

Example 1.1.3. Fix an abelian group A. We can form a presheaf $\mathcal{F}_A(U) = A$ with all restriction maps $\mathcal{F}_A(U) \xrightarrow{\text{id}} \mathcal{F}_A(V)$.

Example 1.1.4. Fix $x \in X$ and an abelian group A. We get a presheaf

$$\kappa_A(x)(U) = \begin{cases} A & \text{if } x \in U; \\ 0 & \text{if } x \notin U. \end{cases}$$

The presheaf $\kappa_A(x)$ is called the skyscraper presheaf at x.

Definition 1.1.5 (sheaf). A presheaf \mathcal{F} is a **sheaf** provided for each open cover $\{U_i\}$ of X and $s_i \in \Gamma(U_i, X)$ with $s_i|_{U_i \cap U_i} = s_j|_{U_i \cap U_i}$, there is a unique $s \in \Gamma(X, \mathcal{F})$ such that $s|_{U_i} = s_i$.

Example 1.1.6. Of the previous three examples **Example 1.1.2**, **1.1.3**, and **1.1.4**, the presheaf of holomorphic functions is a sheaf and the skyscraper presheaf is a sheaf, but the constant presheaf is not a sheaf. Let $A = \mathbf{Z}$; consider a connected topological space X and disjoint open subsets U_1 and U_2 in a fixed cover $\{U_i\}$ of X such that $s_1 = 2$ on U_1 and $s_2 = 3$ on U_2 . Then $s_1|_{U_1 \cap U_2} = s_2|_{U_1 \cap U_2}$ since $U_1 \cap U_2 = \emptyset$, but there is no global section s for which $s|_{U_1} = s_1$ and $s|_{U_2} = s_2$.

Definition 1.1.7 (sheafification). To any presheaf \mathcal{F} , there is a unique sheaf \mathcal{F}^+ , the **sheafification** of \mathcal{F} , with the universal property that there is a map of presheaves $\mathcal{F} \to \mathcal{F}^+$ so that for any sheaf \mathcal{G} and map $\mathcal{F} \to \mathcal{G}$, there is a diagram

Remark 1.1.8. Sheafification is used to define an abelian category of sheaves. For example, for a map of sheaves $\mathcal{F} \to \mathcal{G}$, we define $\operatorname{im}(\mathcal{F} \to \mathcal{G})$ to be the sheafification of the presheaf $U \mapsto \operatorname{im}(\mathcal{F}(U) \to \mathcal{G}(U))$.

2 Warning! 1.1.9. A sequence of presheaves

$$\cdots \to \mathcal{F}^{i-1} \to \mathcal{F}^i \to \mathcal{F}^{i+1} \to \cdots$$

is exact if and only if

$$\cdots \to \mathcal{F}^{i-1}(U) \to \mathcal{F}^i(U) \to \mathcal{F}^{i+1}(U) \to \cdots$$

is exact for all open sets $U \subseteq X$. But this does *not* characterize exactness as sheaves. Instead, one uses stalks, which are, for $x \in X$, the group

$$\mathcal{F}_x = \varinjlim_{x \in U} \mathcal{F}(U).$$

Thus

 $\cdots \to \mathcal{F}^{i-1} \to \mathcal{F}^i \to \mathcal{F}^{i+1} \to \cdots$

is exact as sheaves if and only if

$$\cdots \to \mathcal{F}^{i-1}{}_x \to \mathcal{F}^i{}_x \to \mathcal{F}^{i+1}{}_x \to \cdots$$

is exact.

Definition 1.1.10 (ringed space). A ringed space is a pair $(|X|, \mathcal{O}_X)$ of a topological space and a sheaf of rings \mathcal{O}_X , called the structure sheaf.

Example 1.1.11. Let |X| be any complex manifold and set $X = (|X|, \mathcal{O}_X)$ where \mathcal{O}_X is the sheaf of holomorphic functions.

Example 1.1.12. Fix any commutative ring R. We get a topological space

Spec $R = \{ \mathfrak{p} \subseteq R \mid \mathfrak{p} \text{ is a prime ideal} \}.$

For $f \in R$, set $V(f) = \{ \mathfrak{p} \in \operatorname{Spec} R \mid f \in \mathfrak{p} \} \subseteq \operatorname{Spec} R$. Declare $U_f = \operatorname{Spec} R \setminus V(f)$ to be a basis of open sets. We can also define a sheaf \mathcal{O}_X by declaring $\mathcal{O}_X(U_f) = R_f = R[1/f]$. Explicitly, for $U \subseteq \operatorname{Spec} R$,

$$\Gamma(U, \mathcal{O}_X) = \left\{ s : U \to \bigcup_{\mathfrak{p} \in U} R_\mathfrak{p} \mid s(\mathfrak{p}) \in R_\mathfrak{p} \text{ and locally } s = \frac{f}{g} \text{ for } f, g \in R \right\}.$$

We get a ringed space $X = \operatorname{Spec} R = (|\operatorname{Spec} R|, \mathcal{O}_X).$

Definition 1.1.13 (morphism of ringed spaces). Given two ringed space $X = (|X|, \mathcal{O}_X)$ and $Y = (|Y|, \mathcal{O}_Y)$, a **map** $X \to Y$ is a continuous function $\varphi : |X| \to |Y|$ and a map of sheaves $\varphi^{\sharp} : \mathcal{O}_Y \to \varphi_* \mathcal{O}_X$, where $\varphi_* \mathcal{O}_X$ is a sheaf on |Y| defined by, for $U \subseteq |Y|, \varphi_* \mathcal{O}_X(U) = \mathcal{O}_X(\varphi^{-1}U)$. Thus a map is $(\varphi, \varphi^{\sharp}) : X \to Y$, which we denote $\varphi : X \to Y$ (deal with it).

Remark 1.1.14. We get a natural notion of isomorphism for ringed spaces; $X \cong Y$ if and only if there are maps $\varphi : X \to Y$ and $\psi : Y \to X$ with $\varphi \circ \psi$ and $\psi \circ \varphi$ identities.

Definition 1.1.15 (affine scheme). A ringed space $X = (|X|, \mathcal{O}_X)$ is an **affine scheme** if $X \cong \operatorname{Spec} R$ for some ring R.

Definition 1.1.16 (scheme). We say X is a scheme if there is an open cover $\{U_i\}$ of X with

$$(U_i, \mathcal{O}_X|_{U_i}) \cong \operatorname{Spec} R_i$$

for commutative rings R_i .

Remark 1.1.17. For $X = \operatorname{Spec} R$, we view R as functions on X. For example, if $R = \mathbb{Z}$, then $\operatorname{Spec} \mathbb{Z} = \{(0), (p) \mid p \in \mathbb{Z} \text{ is prime}\}$. So, in this perspective, f = 12 is a function. What is f((5))? It is $f((5)) = 12 \mod 5 \equiv 2 \mod 5 \in \mathbb{Z}/5\mathbb{Z}$.

Also note that not all points of Spec Z are closed. In fact, $\overline{(0)} = \operatorname{Spec} Z$. We call (0) a generic point.

Example 1.1.18. Here is an example of a non-affine scheme. Fix $S = \mathbf{C}[x_0, ..., x_n]$. Note that S is a graded ring;

$$S = \bigoplus_{d \ge 0} [S]_d$$

where each $[S]_d$ is the **C**-vector space generated by $\underline{x}^{\underline{\lambda}} = x_0^{\lambda_0} \cdot x_1^{\lambda_1} \cdots x_n^{\lambda_n}$ with $\lambda_0 + \lambda_1 + \cdots + \lambda_n = d$. For instance, if n = 2, then $S = \mathbf{C}[x, y]$, so then

$$[S]_0 \cong \mathbf{C} = \mathbf{C} \cdot 1$$
$$[S]_1 \cong \mathbf{C}^2 = \mathbf{C} \cdot x \oplus \mathbf{C} \cdot y$$
$$[S]_2 \cong \mathbf{C}^3 = \mathbf{C} \cdot x^2 \oplus \mathbf{C} \cdot xy \oplus \mathbf{C} \cdot y^2;$$

that is, $[S]_d$ are monomials of total degree d, and $\dim_{\mathbf{C}}[S]_d = \binom{n+d}{d}$. We call $f \in S$ homogeneous if $f \in [S]_d$ for some d. A prime $\mathfrak{p} \subseteq S$ is homogeneous if it can be generated by homogeneous elements.

Now, define $\operatorname{Proj} S = \{ \mathfrak{p} \subseteq S \mid \mathfrak{p} \text{ is a homogeneous prime} \}$. Any homogeneous $f \in S$ defines $V(f) = \{ \mathfrak{p} \in \operatorname{Proj} S \mid f \in \mathfrak{p} \}$, and we let $U_f = \operatorname{Proj} S \setminus V(f)$ give a basis for the Zariski topology on $\operatorname{Proj} S$. We get a sheaf \mathcal{O}_X with

$$\Gamma(U, \mathcal{O}_X) = \left\{ s : U \to \bigcup_{\mathfrak{p} \in U} S_{\mathfrak{p}} \mid s(\mathfrak{p}) \in S_{\mathfrak{p}} \text{ and locally } s = \frac{f}{g} \text{ with } \deg f = \deg g \right\}.$$

Note that $\Gamma(X, \mathcal{O}_X) \cong \mathbb{C} \not\cong S$; we have fewer global sections than what is necessary for X to be affine. Note also that each x_i in $S = \mathbb{C}[x_0, ..., x_n]$ defines

$$U_i = U_{x_i} = \operatorname{Proj} S \setminus V(x_i) \cong \operatorname{Spec} \mathbf{C} \left[\frac{x_0}{x_i}, \frac{x_1}{x_i}, ..., \frac{\widehat{x_i}}{x_i}, ..., \frac{x_n}{x_i} \right] \cong \mathbf{A}_{\mathbf{C}}^n$$

The set $\{U_i\}$ form a cover of Proj S. This identifies Proj S with $\mathbf{P}^n_{\mathbf{C}}$, projective space. We call $\{U_i\}$ the standard affine charts of projective space.

Definition 1.1.19 (irrelevant ideal). Let $S = \mathbf{C}[x_0, ..., x_n]$. The ideal $\mathfrak{m} = (x_0, ..., x_n)$ is called the **irrelevant ideal** because $\mathfrak{m} \notin \operatorname{Proj} S$.

Example 1.1.20. Set $X = \mathbf{P}_{\mathbf{C}}^2 \cong \operatorname{Proj} \mathbf{C}[x, y, z]$. This has covers

$$U_x = \operatorname{Spec} \mathbf{C} \left[\frac{y}{x}, \frac{z}{x} \right] \cong \mathbf{A}_{\mathbf{C}}^2,$$
$$U_y = \operatorname{Spec} \mathbf{C} \left[\frac{x}{y}, \frac{z}{y} \right] \cong \mathbf{A}_{\mathbf{C}}^2, \text{ and}$$
$$U_z = \operatorname{Spec} \mathbf{C} \left[\frac{x}{z}, \frac{y}{z} \right] \cong \mathbf{A}_{\mathbf{C}}^2.$$

In U_x , (0,1) corresponds to $(y/x, z/x - 1) \subseteq \mathbb{C}[y/x, z/x - 1]$, and in projective space, it corresponds to [1:0:1] which corresponds to (y, z - x) a homogeneous ideal in $\mathbb{C}[x, y, z]$. Hence, there are closed points whose corresponding homogeneous ideals are not maximal.

1.2 Review of Algebraic Geometry: Sheaf Cohomology

Remark 1.2.1. Fix a scheme X. We will assume that X is noetherian and separated. Recall that X is separated if the diagonal map $X \xrightarrow{\Delta} X \times X$ is closed - an analog of Hausdorff. The purpose of requiring schemes to be separated is that it guarantees that if $U, W \subseteq X$ are affine open subscemes, then $U \cap W$ is also affine.

Definition 1.2.2 (\mathcal{O}_X -module). A sheaf \mathcal{F} on X is called an \mathcal{O}_X -module provided for each $U \subseteq X$ open, $\mathcal{F}(U)$ is an $\mathcal{O}_X(U)$ -module.

Example 1.2.3. $\mathcal{O}_X^{\oplus d}$ is a free sheaf of \mathcal{O}_X -modules.

Example 1.2.4. Another example of an \mathcal{O}_X -module is $\mathcal{I} \subseteq \mathcal{O}_X$ an ideal sheaf (which, recall, is a sheaf such that $\mathcal{I}(U) \subseteq \mathcal{O}_X(U)$ is an ideal for all $U \subseteq X$).

Remark 1.2.5. If $X = \operatorname{Spec} R$, every *R*-module *M* defines a sheaf of \mathcal{O}_X -modules, \widetilde{M} , determined by $\widetilde{M}(U_f) = M_f$. Furthermore, note that $\operatorname{Hom}_{\mathcal{O}_X}(\widetilde{M}, \widetilde{N}) \cong \operatorname{Hom}_R(M, N)$.

Remark 1.2.6. Let X be a scheme. Set \mathbf{Sh}_X the category of sheaves on X. Recall from **Definition 1.1.13** that given a map $\varphi : X \to Y$, there is a functor $\varphi_* : \mathbf{Sh}_X \to \mathbf{Sh}_Y$, the pushforward of sheaves. We have a functor in the other direction as well which is a left adjoint to the pushforward functor.

Definition 1.2.7 (inverse image functor). Let $\varphi : X \to Y$ be a morphism of schemes. There is a functor $\varphi^{-1} : \mathbf{Sh}_Y \to \mathbf{Sh}_X$ defined by

$$\varphi^{-1}\mathcal{G}(W) = \lim_{\varphi(W) \subseteq V \text{ open}} \mathcal{G}(V)$$

for $W \subseteq X$ open, $V \subseteq Y$ open, and $\mathcal{G} \in \operatorname{obj}(\mathbf{Sh}_X)$.

 \geq Warning! 1.2.8. If \mathcal{G} is an \mathcal{O}_Y -module, it is not clear that $\varphi^{-1}\mathcal{G}$ is an \mathcal{O}_X -module.

Definition 1.2.9 (quasi-coherent). For a scheme $X = (|X|, \mathcal{O}_X)$, call an \mathcal{O}_X -module \mathcal{F} quasi-coherent provided there is an affine open cover $\{U_i \cong \operatorname{Spec} R_i\}$ such that $\mathcal{F}|_{U_i} \cong \widetilde{M}_i$. Write qCoh_X for the category of quasi-coherent \mathcal{O}_X -modules.

Definition 1.2.10 (pullback functor). Define the **pullback of sheaves** $\varphi^* : \mathbf{qCoh}_Y \to \mathbf{qCoh}_X$ to be $\varphi^* \mathcal{G} = \varphi^{-1} \mathcal{G} \otimes_{\varphi^{-1} \mathcal{O}_Y} \mathcal{O}_X$ for \mathcal{G} a quasi-coherent sheaf on Y.

Remark 1.2.11. If $X = \operatorname{Spec} R$ and $Y = \operatorname{Spec} S$ for rings R and S, then a map $\varphi : X \to Y$ arises as a map $\varphi^{\sharp} : S \to R$. By putting φ^* in module language, we have

$$\begin{array}{ccc} R\text{-mod} & S\text{-mod} \\ & \parallel & & \parallel \\ \mathbf{qCoh}_X \xleftarrow{\varphi_*} & \mathbf{qCoh}_Y \end{array}$$

so that $\varphi_* : R\text{-mod} \to S\text{-mod}$ is restriction of scalars and $\varphi^* : S\text{-mod} \to R\text{-mod}$ is base change.

Remark 1.2.12. In addition to the adjoint pair in Remark 1.2.6, we also have another adjunction

$$\operatorname{Hom}_{\mathcal{O}_{Y}}(\varphi^{*}\mathcal{G},\mathcal{F})\cong\operatorname{Hom}_{\mathcal{O}_{Y}}(\mathcal{G},\varphi_{*}\mathcal{F})$$

for $\varphi: X \to Y$, \mathcal{F} a sheaf on X, and \mathcal{G} a sheaf on Y.

Theorem 1.2.13 (Grothendieck). The category \mathbf{qCoh}_X is abelian and has enough injectives.

Remark 1.2.14. Theorem 1.2.13 is exactly what we need to get the standard homological machine off the ground.

Definition 1.2.15 (sheaf cohomology). Let \mathcal{F} be a sheaf on X. Define

$$H^{i}(X,\mathcal{F}) = \mathbf{R}^{i}\Gamma(X,\mathcal{F}) = h^{i}(\Gamma(X,\mathcal{I}^{\bullet}))$$

for an injective resolution $0 \to \mathcal{F} \to \mathcal{I}^{\bullet}$.

Example 1.2.16. The following is an application of sheaf cohomology. Fix a scheme $X = (|X|, \mathcal{O}_X)$. Consider an ideal sheaf $\mathcal{I} \subseteq \mathcal{O}_X$ with ideal $I \subseteq \mathcal{O}_X(X)$. Set $Z = V(I) \subseteq X$ the subscheme defined by I. One has a natural short exact sequence

$$0 \to \mathcal{I} \to \mathcal{O}_X \to \mathcal{O}_X/_{\mathcal{T}} \to 0.$$

Denote by $\iota: Z \to X$ the inclusion. One can identify $\iota_* \mathcal{O}_Z = \mathcal{O}_X / \mathcal{I}$. We get the associated long exact sequence

So the restriction map is surjective if and only if $\operatorname{im} \delta = 0$. Thus, $H^1(X, \mathcal{I}) = 0$ implies all global sections of Z lift to X.

Remark 1.2.17. We're most interested in quasi-coherent sheaves \mathcal{F} for which $H^i(X, \mathcal{F}) = 0$ for i > 0.

Remark 1.2.18. Let's consider $X = \operatorname{Proj} S \cong \mathbf{P}^d_{\mathbf{C}}$ for $S = \mathbf{C}[x_0, ..., x_d]$. Recall that for $U \subseteq X$,

$$\Gamma(U, \mathcal{O}_X) = \left\{ s \mid \text{locally } s = \frac{f}{g} \in \operatorname{Frac} S \text{ with } g(p) \neq 0 \text{ for } p \in U \text{ and } \deg f = \deg g \right\}.$$

Under the identification of X with $\mathbf{P}_{\mathbf{C}}^d$, f/g is a well-defined function if and only if deg $f = \deg g$.

For each $n \in \mathbf{Z}$, we get a different sheaf $\mathcal{O}_X(n)$ defined by

$$\Gamma(U, \mathcal{O}_X(n)) = \left\{ s \mid \text{locally } s = \frac{f}{g} \text{ with } g(p) \neq 0 \text{ for } p \in U \text{ and } \deg f = \deg g + n \right\}.$$

These are called the Serre twists of \mathcal{O}_X .

Example 1.2.19. $\Gamma(X, \mathcal{O}_X(1))$ has a **C**-basis of $\{x_0, x_1, ..., x_d\}$.

Example 1.2.20. $\Gamma(X, \mathcal{O}_X(2))$ has a **C**-basis of $\{x_i x_j \mid i, j \in \{0, ..., d\}\}$.

Example 1.2.21. In general, one can see that $\dim_{\mathbf{C}} \Gamma(X, \mathcal{O}_X(n)) = \binom{n+d}{d}$ for $n \ge 0$.

Example 1.2.22. If n < 0, $\Gamma(X, \mathcal{O}_X(n)) = \emptyset$, but $1/x_i \in \Gamma(U_{x_i}, \mathcal{O}_X(-1))$.

Theorem 1.2.23 (Serre).

$$H^{q}\left(\mathbf{P}_{\mathbf{C}}^{d}, \mathcal{O}_{\mathbf{P}_{\mathbf{C}}^{d}}(n)\right) = \begin{cases} \left[\mathbf{C}[x_{0}, ..., x_{d}]\right]_{n} & \text{if } q = 0; \\ \left[\frac{1}{x_{0} \cdots x_{d}}\mathbf{C}\left[\frac{1}{x_{0}}, ..., \frac{1}{x_{d}}\right]\right]_{n} & \text{if } q = d; \\ 0 & \text{otherwise.} \end{cases}$$

1.3 Review of Algebraic Geometry: Divisors and Line Bundles

Remark 1.3.1. For us, the sheaves $\mathcal{O}_X(n)$ are in a nice class called line bundles. We'll always work in the normal setting; i.e., any scheme X is assumed to be noetherian, separated, irreducible, and normal. Recall that normal schemes satisfy two properties:

- 1. X is (R_1) ; i.e., regular in codimension 1. In other words, codim Sing $X \ge 2$. For instance, if X is onedimensional, then it must be smooth; if X is two-dimensional, then it must have isolated singularities; if X is three-dimensional, then it must have no more than a curve of singularities; etc.
- 2. X is (S_2) ; i.e., all local rings of X that have codimension at least 2 have depth at least 2.

Definition 1.3.2 (dual module). Let R be a normal domain and M an R-module. Define $M^{\vee} = \operatorname{Hom}_R(M, R)$, the **dual** of M.

Definition 1.3.3 (reflexive module). There is a natural map $M \to M^{\vee\vee}$. Call *M* reflextive if $M \xrightarrow{\sim} M^{\vee\vee}$.

Example 1.3.4. If M is free, M^{\vee} is free, and M is reflexive.

Example 1.3.5. For any M, M^{\vee} is torsion free. Indeed, if $r\varphi = 0$ for $r \neq 0$ and $\varphi \in M^{\vee}$, then $r\varphi(m) = 0$ for all $m \in M$. As R is a domain and $r \neq 0$, $\varphi(m) = 0$ for all $m \in M$; i.e., $\varphi = 0$.

Consequently, if M is torsion, then $M^{\vee} = 0$.

Remark 1.3.6. For any $M, M^{\vee\vee}$ is reflexive.

Definition 1.3.7 (sheafy Hom). For two sheaves \mathcal{F} and \mathcal{G} , define the **sheafy Hom** $\mathcal{H}om(\mathcal{F},\mathcal{G})$ to be the sheaf defined by

$$U \mapsto \operatorname{Hom}\left(\mathcal{F}|_{U}, \mathcal{G}|_{U}\right)$$
.

Definition 1.3.8 (dual sheaf). We can define $\mathcal{F}^{\vee} = \mathcal{H}om(\mathcal{F}, \mathcal{O}_X)$.

Definition 1.3.9 (reflexive sheaf). Call \mathcal{F} reflexive if the natural map $\mathcal{F} \to \mathcal{F}^{\vee\vee}$ is an isomorphism.

Remark 1.3.10. Recall that $\mathcal{F} \cong \widetilde{M}$ locally means that \mathcal{F} is quasi-coherent (**Definition 1.2.9**). \mathcal{F} is coherent if each M is finitely generated.

Theorem 1.3.11 (Hartogs' Principle). Let X be a normal, irreducible, noetherian scheme and \mathcal{F} a coherent, reflexive \mathcal{O}_X -module. For any closed subscheme $Z \subseteq X$, set $U = X \setminus Z$. Denote $\iota : U \hookrightarrow X$. If the codimension of Z is at least 2, then $\mathcal{F} \to \iota_* \mathcal{F}|_U$ is an isomorphism.

Remark 1.3.12. The slogan for **Theorem 1.3.11** [Hartogs' Principle] is that reflexive sheaves are determined on codimension 2 sets. For instance, if X is a surface, Z is a collection of discrete points, and $U = X \setminus Z$, then any reflexive \mathcal{F} is determined by $\mathcal{F}|_U$.

Remark 1.3.13. This foreshadows the following result: if X is normal, then there is an open set $X_{sm} \subseteq X$ with X_{sm} smooth/regular and of codimension at least 2. That is, any reflexive sheaf on X is determined by X_{sm} .

Remark 1.3.14. Now, to motivate divisors, first consider a curve, X. Given a rational function s = f/g with f and g having no common factors, we can define

$$\operatorname{Zeros}(s) = \{ p \in X \mid f(p) = 0 \}$$

and

$$\operatorname{Poles}(s) = \{ p \in X \mid g(p) = 0 \}$$

We know that we should count multiplicities as well.

Example 1.3.15. Let $X = V(y - x^2) \subseteq \mathbb{C}^2$. For each $b \in \mathbb{C}$, we get $L_b = V(y - b)$ and an intersection $X \cap L_b$.

We can build a rational function s with $Zeros(s) = \{p, q\}$ or Zeros(s) "equal to the set" $\{p, p\}$.

Definition 1.3.16 (Weil divisor). Fix a scheme X. A Weil divisor is a finite formal sum $\sum a_i D_i$ where $a_i \in \mathbb{Z}$ and D_i is an irreducible reduced subscheme of codimension 1.

Example 1.3.17. The following is the cartoon to have in mind:

A Weil divisor could be something like $2D_1 - 3D_2 + D_3 - D_4 + 6D_5$.

Definition 1.3.18 (prime divisor). A single irreducible reduced subscheme of codimension 1, *D*, is called a **prime divisor**.

Example 1.3.19. Recalling **Example 1.3.15**, for $X = V(y - x^2)$ and $L_b = V(y - b)$ in \mathbb{C}^2 , $X \cap L_b$ has associated divisors p + q or 2p. Hence, we have the aforementioned way to track zeros of a rational function s with multiplicity.

Definition 1.3.20 (effective divisor). A divisor $D = \sum a_i D_i$ is said to be effective provided $a_i \ge 0$. We write $D \ge 0$ without concern.

Remark 1.3.21. We'll suppress the details, but for $X = \operatorname{Spec} R$, each prime divisor D is defined by a height 1 prime \mathfrak{q}_D . If we denote η_D the generic point of D, then we can view \mathfrak{q}_D as the maximal ideal of the local ring \mathcal{O}_{X,η_D} . If R is normal, then \mathcal{O}_{X,η_D} is a discrete valuation ring. There is a natural valuation ν_D on R that measures the zeros and poles of rational functions along D. So for each $s = f/g \in \operatorname{Frac} R$, we can write

$$\operatorname{div}(s) = \sum_{D \text{ prime}} \nu_D(s) \cdot D.$$

Example 1.3.22. Let $X = \operatorname{Spec} \mathbf{C}[x] \cong \mathbf{A}^{1}_{\mathbf{C}}$. Let

$$s = \frac{x(x-i)^2(x+1)^3}{x(x-i)(x+2i)^2}$$

Thus div(s) = V(x-i) + 3V(x+1) - 2V(x+2i). To see this, note that, for example, in $\mathbb{C}[x]_{(x+1)}$, one has $s \in (x+1)^3 \setminus (x+1)^2$.

Remark 1.3.23. This perspective globalizes; for a scheme X, set K(X) to be its rational function field (i.e., $K(X) = \mathcal{O}_{X,\eta_X}$. Any $s \in K(X)^{\times}$ defines a divisor div(s), and as X is noetherian, $\nu_D(s) \neq 0$ for only finitely many prime divisors.

Definition 1.3.24 (principal divisor). We call such divisors of the form div(s) for some rational function *s* principal.

Example 1.3.25. Let $X = \mathbf{P}_{\mathbf{C}}^n$ and we work analytically. Here, K(X) is the field of meromorphic functions. Any div(s) is of the form $\sum a_i D_i + \sum b_j D_j$ for $a_i \ge 0$ and $b_j < 0$. That is, $\sum a_i D_i$ is Zeros(s) and $\sum b_j D_j$ is Poles(s).

Note that for projective space, we see that $\sum a_i + \sum b_j = 0$. This holds algebraically as well; hence, there are lots of divisors which are not principal.

Example 1.3.26. Fix $X \subsetneq \mathbf{P}^n_{\mathbf{C}}$ and assume that X is large; i.e., X is not contained in a hyperplane. Each hyperplane H defines a divisor $D_H(X)$ by considering $X \cap H$. Below is a sample cartoon:

Here, $D_{H_1}(X) = p + 2q + r$, and for another hyperplane H_2 , $D_{H_2}(X)$ would be another divisor with coefficients also adding to 4, by Bézout's theorem. If we write two hyperplanes as $H_1 = V(f)$ and $H_2 = V(g)$, then $D_{H_1}(X) - D_{H_2}(X) = \operatorname{div}(f/g)$; that is, their difference is principal. Furthermore, note that for $s, s' \in K(X)$, $\operatorname{div}(ss') = \operatorname{div}(s) + \operatorname{div}(s')$. This motivates the following.

Definition 1.3.27 (divisor class group). For X noetherian, normal, and irreducible, denote by Div(X) the group of Weil divisors. The principal divisors, Prin X, are a subgroup. Thus, define Cl(X) = Div(X)/Prin(X), the **divisor class group**. That is, we say $D \equiv D'$ for Weil divisors D and D' if and only if D = D' + div(s) for some s, and we say D is linearly equivalent to D'.

Remark 1.3.28. There is always a group homomorphism $Cl(X) \to \mathbf{Z}$, the degree map, sending a class

$$\left[\sum n_i D_i\right] \mapsto \sum n_i.$$

This is well-defined, since $\deg(\operatorname{div}(s)) = 0$, by **Example 1.3.25**.

Example 1.3.29. $Cl(\mathbf{P}^n_{\mathbf{C}}) \cong \mathbf{Z}$.

Theorem 1.3.30 (Hartshorne). A noetherian normal domain R is a UFD if and only if Cl(Spec R) = 0.

Remark 1.3.31. Divisors are also linked to the concept of fractional ideals.

Definition 1.3.32 (fractional ideal). For a domain R, a **fractional ideal** is a finitely generated submodule of Frac R.

Example 1.3.33. $(1/2)\mathbf{Z} \subseteq \mathbf{Q}$ is a finitely generated submodule of $\mathbf{Q} = \operatorname{Frac} \mathbf{Z}$.

Remark 1.3.34. Each Weil divisor D defines a sheaf in the following way. Let D be a Weil divisor; we get a sheaf $\mathcal{O}_X(D)$ where $\Gamma(U, \mathcal{O}_X(D)) = \{s \in K(X) \mid \operatorname{div} s|_U + D|_U \ge 0\}.$

Example 1.3.35. Let X be a curve. Let D = 2p+q-3r for points $p, q, r \in X$. If $s = f/g \in K(X)$, then we have div $s = \sum a_i D_i$. If $s \in \Gamma(X, \mathcal{O}_X(D))$, then we need div(s) + D to be effective; i.e., div $s + D \ge 0$ on X. This puts constraints on a_p, a_q , and a_r , while all other a_i just need to be nonnegative. See that $a_p + 2 \ge 0$, $a_q + 1 \ge 0$, and $a_r - 3 \ge 0$. Thus, $a_p \ge -2$, $a_q \ge -1$, and $a_r \ge 3$. Thus, s is allowed poles at p and q of order at most 2 and 1, but must have a zero of order at least 3 at r.

Remark 1.3.36. If *D* is effective, then sections of $\mathcal{O}_X(D)$ are allowed poles, and $\mathcal{O}_X(-D)$ must have zeros along *D*. One can identify $\mathcal{O}_X(-D)$ with an ideal sheaf $\mathcal{O}_X(-D) = \mathfrak{a}_D \subseteq \mathcal{O}_X$ defining *D*; we call it antieffective.

Example 1.3.37. If $D = D_i$ is prime in $X = \operatorname{Spec} R$, then $\mathfrak{a}_D \subseteq R$ and $V(\mathfrak{a}_D) = D$. For instance, let $R = \mathbb{C}[x, y]$ and D = V(x - y). Then $\mathfrak{a}_D = (x - y)$, and we write $\mathfrak{a}_D = R(-D)$.

Remark 1.3.38. We'll see next that $\mathcal{O}_X(D)$ is a fractional ideal. To see this, we'll use duals. Fix $X = \operatorname{Spec} R$ and $M \subseteq \operatorname{Frac} R$ a submodule.

Definition 1.3.39 (colon). Define $R :_{\operatorname{Frac} R} M = \{f/g \in \operatorname{Frac} R \mid (f/g)M \subseteq R\}$.

Lemma 1.3.40. If M is torsion free and rank 1, then $M^{\vee} = \operatorname{Hom}_R(M, R) \cong R :_{\operatorname{Frac} R} M$.

Proof. As rank M = 1, Frac $R \otimes M \cong$ Frac R. As M is torsion free, the map $M \to M \otimes$ Frac R is injective. To identify $\operatorname{Hom}_R(M, R)$ with $R :_{\operatorname{Frac} R} M$, note that any $s \in R :_{\operatorname{Frac} R} M$ defines a multiplication map $M \to R$ via $m \mapsto sm$; i.e., s yields an element of $\operatorname{Hom}_R(M, R)$.

Conversely, view

$$\operatorname{Hom}_{R}(M, R) \cong \operatorname{Hom}_{R}(M, R) \otimes R$$
$$\subseteq \operatorname{Hom}_{R}(M, R) \otimes \operatorname{Frac} R$$
$$\cong \operatorname{Hom}_{\operatorname{Frac} R}(M \otimes \operatorname{Frac} R, R \otimes \operatorname{Frac} R)$$
$$\cong \operatorname{Hom}_{\operatorname{Frac} R}(\operatorname{Frac} R, \operatorname{Frac} R)$$
$$\cong \operatorname{Frac} R,$$

with the final isomorphism given via multiplication. So any element of $\operatorname{Hom}_R(M, R)$ is given by $s \in \operatorname{Frac} R$, and by definition such $s \in R :_{\operatorname{Frac} R} M$.

Remark 1.3.41. So if $X = \operatorname{Spec} R$ and we define $R(D) = \Gamma(X, \mathcal{O}_X(D))$ for a Weil divisor D, then, recalling that each prime divisor has an associated height 1 prime ideal by **Remark 1.3.21**, we see that if D is prime, then $R(D) \cong D^{\vee} \cong R$:_{Frac R} D. Essentially, div $s + D \ge 0$ if and only if $sD \subseteq R$.

Example 1.3.42. Let $R = \mathbf{Z}$, so Frac $R = \mathbf{Q}$, and let $D = p\mathbf{Z}$. As a result, we have that

$$D^{\vee} = \operatorname{Hom}(p\mathbf{Z}, \mathbf{Z}) \cong \mathbf{Z} :_{\mathbf{Q}} p\mathbf{Z} \cong \frac{1}{p}\mathbf{Z},$$

a fractional ideal.

Lemma 1.3.43. Let X = Spec R, let D be a Weil divisor, and write $R(D) = \Gamma(X, \mathcal{O}_X(D))$. The sheaf R(D) is reflexive, and $\mathcal{O}_X(D)$ is a reflexive \mathcal{O}_X -module.

Remark 1.3.44. We also state the following facts:

- If D is a prime Weil divisor on $X = \operatorname{Spec} R$, then $R(D) \cong D^{\vee} \cong R :_{\operatorname{Frac} R} D$. Here, we conflate D with its associated height 1 prime ideal.
- $R(-D) \cong D$.
- One can check that for divisors A and B, $R(A+B) \cong (R(A) \cdot R(B))^{\vee \vee}$. Recall that $M^{\vee \vee}$ is the reflexive closure of M. In particular, if $D = \sum a_i D_i \ge 0$ is effective, then $R(-D) = (\prod D_i^{a_i})^{\vee \vee}$ and $R(D) = R(-D)^{\vee}$ is a fractional ideal.
- $D = \operatorname{div} s$ is principal if and only if $R(D) \cong (1/s)R$ is free.

Remark 1.3.45. One can define Cl(R) as the multiplicative group of all height 1 prime fractional ideals modulo principal fractional ideals. From here, it's clear that R is a UFD if and only if Cl(R) = 0.

Example 1.3.46. Let $R = k[x^2, xy, y^2] \cong k[a, b, c]/(ac - b^2)$ for k a field. We have a divisor in the scheme $X = \operatorname{Spec} R$ given by $D = (x^2, xy)$ which is not locally principal, but notice that $R(-2D) = (D^2)^{\vee\vee}$ and $D^2 = (x^4, x^2y^2, x^3y) = (x^2 \cdot x^2, x^2 \cdot y^2, x^2 \cdot xy) = x^2R$, and $R(2D) = (1/x^2)R \cong (x^2R)^{\vee}$.

Theorem 1.3.47. Two divisors D_1 and D_2 are linearly equivalent if and only if $R(D_1) \cong R(D_2)$. All the more, this holds for all normal, noetherian, irreducible, separated schemes.

Proof sketch. We prove one direction. If $D_1 = D_2 + \text{div } s$ for some s - that is, D_1 and D_2 are linearly equivalent - then we claim that $R(D_1)s \cong R(D_2)$. Given $f \in R(D_1)$, we have div $f + D_1 \ge 0$, so div $(fs) + D_1 =$ $\operatorname{div} f + \operatorname{div} s + D_1 \ge \operatorname{div} s$. Thus, $\operatorname{div}(fs) + D_1 - \operatorname{div} s = \operatorname{div}(fs) + D_2 \ge 0$, so $fs \in R(D_2)$. On the other hand, let $g \in R(D_2)$; then div $g + D_2 \ge 0$, so div $(g/s) + D_1 = \text{div } g + D_1 - \text{div } s = \text{div } g + D_2 \ge 0$, so $g/s \in R(D_1)$, and therefore $g \in R(D_1)s$. Hence the double inclusion is shown.

We omit the other direction.

Remark 1.3.48. The main takeaway is that divisors are a linear way to understand the geometry of X.

Definition 1.3.49 (Cartier divisor). A Weil divisor D on a scheme X is called **Cartier** provided that there is an open cover $\{U_i\}$ of X such that $D|_{U_i} = \operatorname{div} f_i$ is principal.

Example 1.3.50. For the most basic example, any principal divisor is Cartier.

Example 1.3.51. For a nonexample, consider the scheme $X = \text{Spec } k[x^2, xy, y^2]$ with divisor $D = (x^2, xy)$ from **Example 1.3.46**. D is not locally principal, so it is not Cartier.

Example 1.3.52. For another divisor that is not Cartier, let $X = V(x^2 + y^2 - z^2) \subseteq \mathbf{A}^3$ be the cone. Form the divisor D by intersection with V(x - z). D is not Cartier as it is not principal near the cone point. A function at the cone point needs to vanish in y to order 2.

Lemma 1.3.53. Let $X = \operatorname{Spec} R$. D is Cartier if and only if R(D) is projective.

Proof. Locally, D is principal if and only if R(D) is free of rank 1.

Definition 1.3.54 (trivialization). We call the data $\{U_i, f_i\}$ of a Cartier divisor D a trivialization of D.

Remark 1.3.55. Note that given a trivialization $\{U_i, f_i\}$, on $U_i \cap U_j$, we have div $f_i|_{U_i \cap U_j} = \text{div } f_j|_{U_i \cap U_j}$; i.e., f_i/f_j is regular.

Remark 1.3.56. For a Weil divisor D, we claim that we have the following bijection:

$$\{s \mid s \in H^0(X, \mathcal{O}_X(D))\} \leftrightarrow \{D' \mid D' \ge 0, D' \equiv D\}$$

$$s \mapsto D + \operatorname{div} s.$$

To see this claim, set K_X the sheaf of locally constant functions with values in K(X). Set K_X^* the sheaf of nonzero section in K_X . View \mathcal{O}_X^* as the sheaf of locally constant sections of K_X without poles. Thus $\mathcal{O}_X^* \subseteq K_X^*$. Hence, we have a short exact sequence

$$0 \to \mathcal{O}_X^* \to K_X^* \to K_X^* \to \mathcal{O}_X^* \to 0.$$

We now claim that a global section of $H^0(X, K_X^*/\mathcal{O}_X^*)$ defines a Cartier divisor. Indeed, as K_X^*/\mathcal{O}_X^* is only defined via sheafification, a global section arises from an open cover $\{U_i\}$ and $f_i \in K_X^*(U_i)$ such that gluing occurs; i.e., $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ in $K_X^*(U_i)/\mathcal{O}_X^*(U_i)$. That is, f_i/f_j is regular on $U_i \cap U_j$. Therefore, $\{U_i, f_i\}$ is indeed a trivialization of a Cartier divisor.

Now, this divisor is principal if and only if the associated global section is in

$$\operatorname{im}\left(H^{0}\left(X, K_{X}^{*}\right) \to H^{0}\left(X, \overset{K_{X}^{*}}{\nearrow}_{\mathcal{O}_{X}^{*}}\right)\right).$$

As K_X^* is flasque, $H^1(X, K_X^*) = 0$; i.e., $H^0(X, K_X^*) \to H^0(X, K_X^*/\mathcal{O}_X^*) \to H^1(X, \mathcal{O}_X^*) \to 0$ is exact. That is, we have an identification

$$H^1(X, \mathcal{O}_X^*) \leftrightarrow \{D \mid D \text{ is a Cartier divisor}\}_{\sim,}$$

where \sim denotes linear equivalence.

Definition 1.3.57 (Picard group). The group $H^1(X, \mathcal{O}_X^*) \cong \{D \mid D \text{ is Cartier}\}_{\sim}$ is called the **Picard** group of X. Write $\operatorname{Pic}(X)$.

Theorem 1.3.58. If X is smooth, then all Weil divisors are Cartier.

Proof. Without loss of generality, it suffices to consider prime divisors D. Set \mathfrak{a}_D to be the ideal sheaf defining D. Recall that D is principal if and only if \mathfrak{a}_D is principal. At each point $x \in X$, pass to the local ring $\mathcal{O}_{X,x}$. Set $\mathfrak{a}_x = \mathfrak{a}_D \mathcal{O}_{X,x}$. As X is smooth, $\mathcal{O}_{X,x}$ is regular and \mathfrak{a}_x has height 1. By Krull Hauptidealsatz, \mathfrak{a}_x is principal. Now, the sheaf \mathfrak{a}_D has stalk \mathfrak{a}_x which is principal; recall that

$$\mathfrak{a}_x = \lim_{x \in U} \mathfrak{a}_D(U).$$

As X is noetherian, \mathfrak{a}_x is finitely generated, so we can pick U_x sufficiently small so that $\mathfrak{a}_x \cong \Gamma(U_x, \mathfrak{a}_D)$; but then $D|_{U_x}$ is principal, so $D|_{U_x} = \operatorname{div} f_x$. Now cover X by $\{U_i, f_i\}$ which is a trivialization.

Remark 1.3.59. In **Theorem 1.3.58**, the hypothesis that X is smooth is not needed in certain circumstances. If $\mathcal{O}_{X,x}$ is a UFD, then all height 1 ideals are principal, and the proof holds.

Definition 1.3.60 (factoral). We call X factoral if $\mathcal{O}_{X,x}$ is a UFD for all $x \in X$.

Corollary 1.3.61. If X is factoral, then all Weil divisors are Cartier.

Remark 1.3.62. We now turn to the second topic of the section, line bundles, and see how Cartier divisors are related to line bundles.

Definition 1.3.63 (locally free sheaf). A sheaf \mathcal{F} of \mathcal{O}_X -modules is **locally free** if there is an open cover $\{U_i\}$ such that $\mathcal{F}|_{U_i}$ is free; i.e., $\mathcal{F}|_{U_i} \cong \mathcal{O}_X^{\oplus d_i}$.

Definition 1.3.64 (rank of a locally free sheaf). If \mathcal{F} is a locally free sheaf, $\mathcal{F}|_{U_i} \cong \mathcal{O}_X^{\oplus d}$, and d is independent, then we say \mathcal{F} is **locally free of rank** d.

Definition 1.3.65 (vector bundle). If \mathcal{F} is a locally free sheaf of rank d, then we say \mathcal{F} is a vector bundle.

Definition 1.3.66 (line bundle). If \mathcal{F} is a vector bundle and the rank of \mathcal{F} is 1, then \mathcal{F} is called a **line bundle**.

Remark 1.3.67. In topology, a vector bundle is a space E with a surjective map $\pi : E \to X$ such that each fiber $\pi^{-1}(x)$ is a vector space for all $x \in X$. A section is a map $s : U \to E$, where $U \subseteq X$ is open and $\pi(s(x)) = x$ for all $x \in U$. To each topological vector bundle, we can associate its sheaf of sections $\mathcal{E}(U) = \{s : U \to X \mid s \text{ is a section}\}$. Observe that if X is a scheme, then $\mathcal{E}(U)$ is locally free of rank $\dim \pi^{-1}(x)$ for all $x \in X$. Hence be warned when definitions diverge.

Example 1.3.68. On any X, \mathcal{O}_X is a line bundle.

Example 1.3.69. If $X = \mathbf{P}_{\mathbf{C}}^d$, then each Serre twist $\mathcal{O}_X(n)$ is a line bundle.

Remark 1.3.70. We will see how, essentially, line bundles are the same as Cartier divisors. Each Cartier divisor D has a trivialization $\{U_i, f_i\}$ and a sheaf $\mathcal{O}_X(D)$ with

$$\Gamma(U, \mathcal{O}_X(D)) = \{ s \in K(X) \mid \operatorname{div} s|_U + D|_U \ge 0 \},\$$

and $\mathcal{O}_X(D)|_{U_i} \cong \mathcal{O}_X(\operatorname{div} f_i)|_{U_i} \cong \mathcal{O}_X|_{U_i}$, since div f_i is principal of rank 1. And so, $\mathcal{O}_X(D)$ is a line bundle. However, if $D \equiv D'$, then $\mathcal{O}_X(D) \cong \mathcal{O}_X(D')$. So $\mathcal{O}_X(D)$, a line bundle, does not determine D, only its

class in Pic X. Therefore, we'd like a way, given a line bundle \mathcal{L} , to produce D such that $\mathcal{L} \cong \mathcal{O}_X(D)$. As \mathcal{L} is locally free and rank 1, pick an open cover $\{U_i\}$ and generators $\mathcal{L}|_{U_i} \cong g_i \mathcal{O}_{U_i}$.

Note that D given by $\{U_i, g_i\}$ is a Cartier divisor with $\mathcal{O}_X(D) \cong \mathcal{L}$, but the choice of g_i s is arbitrary.

Now, any section $s \in \Gamma(X, \mathcal{L})$ defines $s|_{U_i} = f_i g_i$ in $\Gamma(U_i, \mathcal{O}_{U_i})$, and $\{U_i, f_i\}$ also defines a Cartier divisor D with $\mathcal{O}_X(D) \cong \mathcal{L}$. Note that $f_i g_i \in \mathcal{O}_{U_i}$; i.e., div $f_i g_i \ge 0$, so each D is effective. Thus, there is a bijection

$$\Gamma(X, \mathcal{L}) \leftrightarrow \{D \mid D \text{ is a Cartier divisor}, D \ge 0, \mathcal{O}_X(D) \cong \mathcal{L}\}$$
$$s \mapsto \{U_i, f_i\}.$$

As Cartier divisors form the group $\operatorname{Pic} X$, we expect a group operation on line bundles.

Lemma 1.3.71. Let \mathcal{E} be a vector bundle, and let \mathcal{F} be an \mathcal{O}_X -module. Set $\mathcal{E}^{\vee} = \mathcal{H}om(\mathcal{E}, \mathcal{O}_X)$. One has $\mathcal{H}om(\mathcal{E}, \mathcal{F}) \cong \mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} \mathcal{F}$.

If \mathcal{L} is a line bundle, one has $\mathcal{L} \otimes \mathcal{L}^{\vee} \cong \mathcal{H}om(\mathcal{L}, \mathcal{L}) \cong \mathcal{O}_X$.

Proof. If suffices to work on stalks, or equivalently, on small open sets U. We can further restrict U so that $\mathcal{E}(U)$ is free. Here, it suffices to prove that $\operatorname{Hom}(\mathcal{E}(U), \mathcal{F}(U)) \cong \operatorname{Hom}(\mathcal{E}(U), \mathcal{O}_X(U)) \otimes \mathcal{F}(U)$. Set $R = \mathcal{O}_X(U)$ (R for ring), $F = \mathcal{E}(U)$ (F for free), and $M = \mathcal{F}(U)$ (M for module). We thus see that

$$\begin{array}{cccc} \operatorname{Hom}(F,R)\otimes M & \longrightarrow & \operatorname{Hom}(F,M) \\ \varphi & \otimes & m \longmapsto & \psi:F & \longrightarrow & M \\ & & x \longmapsto & \varphi(x) \cdot m \end{array}$$

is an isomorphism, because F is free.

Remark 1.3.72. By Lemma 1.3.71, the set of line bundles \mathcal{L} forms a group under \otimes with inverses $(-)^{\vee} = \mathcal{H}om(-, \mathcal{O}_X)$. This group is isomorphic to Pic X, since

1. if $\mathcal{L} \cong \mathcal{O}_X(D)$ and $\mathcal{L}' \cong \mathcal{O}_X(D')$, then $\mathcal{L} \otimes \mathcal{L}' \cong \mathcal{O}_X(D+D')$, and 2. if $\mathcal{L} \cong \mathcal{O}_X(D)$, then $\mathcal{L}^{\vee} \cong \mathcal{O}_X(-D)$.

Therefore, the moral is that the group operation on line bundles is thought of multiplicatively, while on divisors is thought of additively.

Example 1.3.73. Let $X = \mathbf{P}_{\mathbf{C}}^d$. On X, all Weil divisors are Cartier, and the degree map, which is $\operatorname{Cl}(X) = \operatorname{Pic}(X) \to \mathbf{Z}$ defined by $\sum n_i D_i \mapsto \sum n_i$ has an inverse map $m \mapsto \mathcal{O}_X(m) \cong \mathcal{O}_X(mH)$ for any hyperplane H in X. By picking coordinates, we can assume $H = V(x_0)$. It is a direct calculation that $\mathcal{O}_X(H) \cong \mathcal{O}_X(1)$.

Remark 1.3.74. The motivation is that line bundles provide nice embeddings. If we fix a line bundle \mathcal{L} on X and suppose $s_0, ..., s_d \in \Gamma(X, \mathcal{L})$ are sections such that at each point $x \in X$, $s_i(x) \neq 0$ for some i (given such a condition, we say \mathcal{L} is globally generated, or that \mathcal{L} is basepoint free), then we get a morphism

$$\Phi: X \to \mathbf{P}^d_{\mathbf{C}}$$
$$x \mapsto [s_0(x): s_1(x): \dots : s_d(x)].$$

If furthermore, the sections s_i separate tangents (we say \mathcal{L} is very ample), then Φ is a closed immersion which identifies X as a subscheme of $\mathbf{P}^d_{\mathbf{C}}$. We call $\Phi^*(\mathcal{O}_{\mathbf{P}^d_{\mathbf{C}}}(1)) = \mathcal{O}_X(1)$.

Conjecture 1.3.75 (Fujita). If X is a smooth, irreducible scheme, \mathcal{L} has a power which is very ample (we say \mathcal{L} is ample), and $\omega_X \cong \mathcal{O}_X(K_X)$ where K_X is a "canonical divisor," then

1. $\omega_X \otimes \mathcal{L}^{\dim X+1}$ is basepoint free, and

2. $\omega_X \otimes \mathcal{L}^{\dim X+2}$ is very ample.

The sheaf $\omega_X \otimes \mathcal{L}^n$ is called an adjoint bundle.